In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives.
نویسندگان
چکیده
Room-temperature liquid metals (LMs) are attractive candidates for thermal interface materials (TIMs) because of their moderately high thermal conductivity and liquid nature, which allow them to conform well to mating surfaces with little thermal resistance. However, gallium-based LMs may be of concern due to the gallium-driven degradation of many metal microelectronic components. We present a three-component composite with LM, copper (Cu) microparticles, and a polymer matrix, as a cheaper, noncorrosive solution. The solid copper particles alloy with the gallium in the LM, in situ and at room temperature, immobilizing the LM and eliminating any corrosion issues of nearby components. Investigation of the structure-property-process relationship of the three-component composites reveals that the method and degree of additive blending dramatically alter the resulting thermal transport properties. In particular, microdispersion of any combination of the LM and Cu additives results in a large number of interfaces and a thermal conductivity below 2 W m-1 K-1. In contrast, a shorter blending procedure of premixed LM and Cu particle colloid into the polymer matrix yields a composite with polydispersed filler and effective intrinsic thermal conductivities of up to 17 W m-1 K-1 (effective thermal conductivity of up to 10 W m-1 K-1). The LM-Cu colloid alloying into CuGa2 provides a limited, but practical, time frame to cast the uncured composite into the desired shape, space, or void before the composite stiffens and cures with permanent characteristics.
منابع مشابه
Synthesis & study of Polyethylene/Polyaniline/Montmorillonite ductile nano composites properties
Conducting polymers, because of their special properties, are used to introduce conductive polymeric composites. Also, clays have recently been used for preparation of polymer composites with enhanced mechanical and thermal properties. The aim of this work is to study the synergetic effect of the co-presence of conducting polyaniline and montmorillonite in the polyethylene matrix. Polyethylene ...
متن کاملSynthesis & study of Polyethylene/Polyaniline/Montmorillonite ductile nano composites properties
Conducting polymers, because of their special properties, are used to introduce conductive polymeric composites. Also, clays have recently been used for preparation of polymer composites with enhanced mechanical and thermal properties. The aim of this work is to study the synergetic effect of the co-presence of conducting polyaniline and montmorillonite in the polyethylene matrix. Polyethylene ...
متن کاملCarbon-Nanotube-Polymer Nanofibers with High Thermal Conductivity
Vitaliy Datsyuk, a Svitlana Trotsenko and Stephanie Reich a Freie Universität Berlin, FB Physik, Institut für Experimental Physik, Arnimallee 14, 14195 Berlin, Germany Highly thermally conductive carbon nanotube/polybenzimidazole polymer nanofiber composites were produced by core-shell electrospinning. The in-plane thermal conductivity increased by factor of 50 for 1.94 %wt. carbon nanotubes in...
متن کاملA comparison study of polymer/cobalt ferrite nano-composites synthesized by mechanical alloying route
In this research, the effect of different biopolymers such as polyethylene glycol (PEG) and polyvinylalcohol (PVA) on synthesis and characterization of polymer/cobalt ferrite (CF) nano-composites bymechanical alloying method has been systematically investigated. The structural, morphological andmagnetic properties changes during mechanical milling were investigated by X-ray diffraction (XRD),Fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- ACS applied materials & interfaces
دوره 10 2 شماره
صفحات -
تاریخ انتشار 2018